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Justification and examples are provided for the utilization of a method
to evaluate the conductivity in two-dimensional figures of complex
shape. Two methods are proposed for the derivation of approximate
conductivity formulas.

Given a body of infinite length and constant cross
section, having a steady distribution of potential (with
two isopotential surfaces bounding the body) and sub-
ject to the Laplace equation under boundary conditions
of the 1-st kind, we solve the problem of the distribu-
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Fig. 1. Demonstration of the main statement of

the division method (here and subsequently, the

bold lines show boundary isotherms): a) figure

division with adiabatic line; b) composite figure
in coordinates q,, qy.

tion of the potential in such a body simply by examining
the two-dimensional figure which serves as the lateral
cross section. The conductivity of the two-dimensional
figure is understood to be a purely geometric quantity
(the shape factor [1]), directly proportional to the flow
of energy or matter per unit length of the correspond-
ing body and inversely proportional to the difference

in potentials at the boundaries and to the corresponding
transport coefficient. For determinacy we will speak,
in the following, of a temperature field and a heat flux
Q through the solid body with a constant coefficient of
thermal conductivity A, so that the conductivity II is
defined from the equation Q = AlIAt, In the formulated
statement of the problem, the purpose of the engi-
neering calculation is generally the determination of
conductivity, Here it is sufficient to find the conduc-
tivity of the two-dimensional figure which makes up a
part of the lateral cross section of the body and is
bounded by two isotherms and by two adiabatic curves,
drawn with consideration of the conditions of symmetry
for the temperature field.

Exact formulas for the calculation of conductivity
exist only for such comparatively simple figures as,
for example, a rectangle and a sector of a concentric
ring. For figures of greater complexity it becomes
necessary to resort to physical modeling or the te~
dious calculation of the temperature field by a numer-
ical method. Particularly productive, in our opinion,

is the method of the approximate calculation of con-
ductivity employed in [2—4] with respect to the calcu-
lation of insulation in electrical equipment, That
method is based on the division of a complex fig-
ure by means of adiabatic and isothermal lines into
simple parts; this is then followed by the determi-
nation of conductivity in the composite figure on the
basis of well-known formulas. The clear advantage
of this method lies in its simplicity and greater
generality, relative to the numerical method and
the method of modeling, The method makes it pos-
sible to establish an approximate formula for the
conductivity of an entire class of similar figures,
with changes only in their geometric parameters.
Unfortunately, this method was employed in the
cited references without any justification, nor with-
out any reference to its approximate nature, An
attempt is made here to provide a rigorous founda-
tion for the method of division and for its subsequent
development. ’

We will adopt a system of isotherms and adiabatic
curves (streamlines) in a two-dimensional figure as
an orthogonal curvilinear system of coordinates q; = t,
ds = §, where t is the temperature and y is the stream
function, We will write the familiar Laplace equation
for this new coordinate system [5] as follows:

Dm0 By,
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Here H; and H, are functions of the new coordinates,
defined by the equalities

dsy = Hidgy; dsy = Hydgy, (2)

where ds,; and ds, are the differentials of the arc for
the adiabatic curve and the isotherm, respectively.

According to the definition of the new coordinate
system

oy 9
oq qa

Then, it follows from (1) that
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og, \ Hy
By exchanging the locations of the isotherms and the
adiabatic curves in the specified figure (this operation
will subsequently be known as transposition), we

derive a figure for which the stream function i sat-
isfies the Laplace equation. On the basis of considera-
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tions analogous to the above, for a transposed figure

we derive
S (),
dgs \ H, |

It follows from the last two equations that the functions
H, and H, can be presented in the form

H2 = ﬂf (ql’ Ch), (3)

where m and n are constants and f is a function,

Using the coordinate system (qy,q,), we find an
expression for the conductivity II of the given figure,
By means of two adiabatic curves in proximity to each
other we isolate a strip connecting the boundary iso-
therms. It is not difficult to demonstrate that the con-
ductivity of this strip—with consideration of (2)—is
equal to

Hy = mf (g5, 92
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where q; and g are the values of the coordinate q; on
the boundary isotherms. The conductivity of the entire
figure is thus

Here q; and qj are the values of the coordinate g, on
the boundary adiabatic curves, Having substituted H;
and H, into this formula according to Eqs. (3), we
obtain

_— n(q},;~q§;) _

m{g,—q) 4)
This result corresponds to the fact that the specified
two~dimensional figure inthe new coordinates is trans-
formed into a rectangle whose sides—given an appro-
priate choice of scale for the variables—are equal to
gy — qj (for the isotherms) and g — gf (for the adia-
batic curves}).

The area of this figure in coordinates (qq,qy) is
expressed by the formula

a9 a, 0
S= { (dsds,=mn { (g g)dgrdgs.  (5)
9 % 9 9

The preliminary remarks which we have made
make it possible to demonstrate the following funda~
mental statement. If a plane figure is subdivided by an
arbitrary adiabatic line which does not coincide with
the adiabatic curve of the given figure, the conductiv-
ity of the new composite figure will be less than that
of the original figure, Since any plane figure in corre-
sponding coordinates represents a rectangle, it is
sufficient to prove this statement for the case in which
the original figure is a rectangle and the boundary of
separation is not a segment of the straight line per-
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pendicular to the isothermal sides of the rectangle
(Fig, 1la),

In analogy with the foregoing, for figures I and II
we will introduce a new coordinate system (q,q,) in
which the figures will be in the form of rectangles.
The origin and scale of the independent variables q;
and g, can always be chosen so that these rectangles
are situated as shown in Fig. 1b. We will also assume
that

95— o (6)

Generally speaking, for figures I andII the expressions
for H, and H, will be different. For figure I, let these
expressions have the form of (3), while for figure II

HY = MF (g1, g); HY = NF (g1, o). (7)

The total conductivity of figures I and II according to
formula (4), with consideration of (7) and (8},

1 o n . N P o
=10+ 1" = Py (G5—aqy ~ 71/"1"5_(‘72#”’2\“
It must therefore be demonstrated that the conductivity
of the original rectangle 1/ is greater than I, lLe.,

j,g— @—a) (8)
Having derived the expression for the total area of the
figures I and II in the new coordinates from formula
(5) with consideration of (7) and having transformed
the corresponding double integrals by using the mean-
value theorem, we will have

f
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where
GB<g<qy ¢G<q'<q.
Let us use the Bunyakovskii inequality [5] for the inte-

gral of the square of the function; the last expression
is then transformed into the inequality

”
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9
It is not difficult to prove that the brackets contain
quantities proportional to the length of certain of the
mean adiabatic curves in the corresponding figures,
For example, for figure I the length of the adiabatic
curve is equal to

q a a
(ds= [Hdg=m (@ g)dg.
7 a; 7
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It follows directly from Fig. la that the smallest
length equal to & is exhibited by the adiabatic curves
when g, = g, and ¢, = q; . Replacing the integrals in
inequality (9) by smaller quantities 6/m and §/M,
canceling like terms, and considering condition (6),
we derive inequality (8) which may consequently be
regarded as proved,

The resistance R* of the transposed figure may
therefore be demonstrated by means of formula (4) to
be equal to the conductivity of the original figure, i.e.,

1

II = R* = E;‘ . (10)
Plotting the adiabatic boundaries of separation on the
plane figure under consideration and calculating the
conductivity of the composite figure, we thus obtain
the lower bound for I1. Analogous operations for the
transposed figure—with relation (10)—yield the upper
estimate for II. Appropriate selection of the division
method results in the convergence of these bounds to a
point such that the determination of Il by any of the
methods is sufficiently accurate forpractical purposes.
In this case, if a wall of insulation is being calculated
for industrial applications, the upper bound should be
employed; however, if the wall is intended for conduc-
tion, the lower bound should be used to achieve a solu-
tion "with a margin of error."

By means of the division method, let us find the ap-
proximate formulas to calculate the conductivities of
several plane figures,

For a corrugated wall (see, for example, [6]), a
parallelogram may serve as the simplest element of
the wall. We will denote the sides of thisparallelogram
by a (isotherms) and b (adiabatic curves), with the
acute angle denoted by «.

It follows from (10) that if the figure is not altered
.in the transposition, its conductivity II = 1. Any paral-
lelogram when ¢ = b, i.e., a rhombus, is therefore
a unit figure. When a/b = 0, obviously Il = 0, We will
consider only the parallelograms in the interval 0 <
<a/b <1, When a/b > 1, the conductivity can be found
from(10).

Let us divide the given figure into narrow strips by
means of a system of straight lines, parallel to the
boundary adiabatic curves, and let us replace each
strip by a rectangle whose sides are equal to sinada
and b + cos ada, and for which the conductivity is less
than the conductivity of the strip and equal to dII =
= sin ada (b + cos ada)™t. As da — 0, dIl ~ sin o(da/
/b). The conductivity of the composite figure derived
by integration of dIl in limits from 0 to a, thus yields
the lower estimate for the conductivity of the paral-
lelogram

> % sina. (11)

The transposed figure will be a parallelogram having
boundary isotherms b and adiabatic curves a, with

b > a. Let us consider the parallelograms with the
integral ratio b/a =i, and which can be divided by
means of the adiabatic lines into i parallel included
rhombi. According to the fundamental statement of the
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method, for such figures II* > b/a. Assuming that I1*
as a function of b/a is monotonic, we can make the
statement that for any b/a > 1, Ii* > b/a. The upper
estimate for the parallelograms under consideration
is therefore

—_— (12)

The maximum divergence between estimates (11) and
(12) when a/b = 1 and @ = 7/4 does not exceed 15%;
for heat-engineering calculations this is acceptable,
However, it is possible fo achieve a much more exact
solution of the problem by deriving an interpolational
formula on the basis of the method described below.
We know that one is the exact value of II for the par-
allelogram when ¢ = b. Let us find the rectangle with
the same distance between the boundary adiabatic
curves and exhibiting the same conductivity as the
rhombus. This will obviously be a square whose sides
are equal to g sina. Having established the length of
the boundary isotherms for the two figures and having
also established «, we will increase the length of the
boundary adiabatic curves, retaining a specific rela-
tionship between these. We will refer to these two
figures as connected. The form of the connection, i.e.,
the form of the relationship between the length of the
boundary adiabatic curves, must be chosen so that the
conductivity of the connected figures coincides at least
for one value of a geometric parameter. If the exact
formula for II is known for one of the figures, it can
serve as an approximate formula for the II of another
figure which is more complex,

For the connected parallelogram and rectangle we
will assume that the difference between the length of
the boundary adiabatic curves remains constant. The
length of the adiabatic curve for the rectangle is thus
equal to b — a(l — sin @) and for a/b = 1 the conduc-
tivity of the parallelogram is

asina sina

=~ - = (13)
b—a(l—sina) i—i—sina—l
a

It is not difficult to prove that according to formula
(13) the value of II does not exceed the limits of esti-
mates (11) and (12), while for a/b = 0 formula (13)
yields an exact value of Il = 0, Control calculations
for the parallelogram conductivities with intermediate
values of a/b by means of a network method demon-
strated the high accuracy of formula (13) over the
entire interval 0 < a/b = 1. For example, when a/b =
= 0.5 and o = n/4, the Il calculated from formula (13)
and the magnitude of Il derived numerically for a net-
work grid of b/14, differ by less than 3%,

The problem of the conductivity in a closed shell
bounded in the lateral cross section from within and
without by concentric regular polygons calls for con-
sideration of a rectangular trapezoid. We will denote
the bases (isotherms) of the trapezoid as a and b (a <
<b), while the acute angle formed by the boundary
adiabatic curves is denoted by «. The method of di-
viding this figure becomes clear from Fig, 2a., Re-
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placing each strip by a sector of the concentric ring
and calculating the conductivity of the composite figure,
we derive the lower estimate for the conductivity of
the trapezoid:

(14)

The division of the transposed figure is shown in Fig.
2b. Here we obtain strips of constant width dx, as

dx — 0 exhibiting a length a + ax. The estimate for the
conductivity of the transposed figure is

(b—a)ctga
dx

J a-tax
0

=—1 In [1+a(—b~—l> ctga}.
o a

Consequently, the conductivity of the given figure is
bounded from above by the inequality

m* >

o
In {H—a(i —1> ctga}
a

The maximum divergence in the estimates for o = 7/4
is attained when b/a = 1.1 and amounts to 20%. The
quantity @/b may vary from 0 to 1. Each of the esti-
mates yields identical values for Il at the ends of this
interval. For the derivation of the interpolational for-
mula we have to know at least one other value of Il
within the interval. For this purpose, let us consider

(15)

<<

A

Fig, 2, Approximate determination of conductivity of

rectangular trapezoid: a) division of given trapezoid,

b) division of transposed trapezoid; c¢) trapezoid
determination with Il = 1.

the figure ABCD (Fig, 2¢) in which the sides AB and
CD are adiabatic curves, BC and AD are isotherms,
with AD = CD =b and AB = BC = g, and the angle be-
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tween the adiabatic curves denoted by «. It follows
from the above that for such a figure Il = 1, Let us
complete the transition from the figure ABCD to a
trapezoid of the same area ofthe same isotherm length
(B'C' = BC), and the same average length for the bound-
ary adiabatic curves (BB' = CC'"), With this transition,

a
K
< I b
M
BN
V//8
N
d

Fig, 3. Wall element with conductors of
rectangular section.

the conductivity undergoes no substantial change. It is
therefore possible to assume that for all trapezoids
with a/b =tg((1/4) — (e/2)}, I & 1, As a figure con-
nected with the trapezoid, let us take the sector of the
concentric ring with the central angle o, and as the
form of the connection we will take the function (b/a)/
/{ry/ry) = const, where ry/ry is the ratio of the ring
radii, For the sector Il = 1, ry/ry = expa. The ap-
proximate formula for the conductivity of the trapezoid
will then have the form

b & o '
| Zig (&~ _2%
“[a e (% 2”“

Formula (16) yields excellent results for a/b <

= tg((n/4) - (a/2)), but with a/b close to 1, the values
of I calculated from this formula exceed the limits of
estimate (15), For the connected figure it is therefore
better to select a rectangle in which the length of the
adiabatic curve is equal to the height h of thetrapezoid,
Having established h and «, wewill increase the lengths
of the boundary isotherms of the connected figures,
retaining a constant difference. As a result, we derive
thefollowing interpolational formulafor a/b = tg{(a/4s ~

= (a/2)):

Q

NEY (16)

] 1
I~1+tga 5 — m < . an
S (—_—Q_) —1

a .

Formulas (16) and (17) have been checked for vari-
ous values of o and a/b by determining the value of Il
through a numerical method. The agreement of the
results is excellent. Thus, when o« = /4 and a/b = 0.5,
the divergence in the magnitude of II amounts to ~1%,
while for a/b = 0,1, it is approximately 4% (the net-
work spacing was taken as equal to 0,1b),
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Let us point to yet another method of deriving the
approximate formula for the conductivity of complex
figures. We will examine this method by calculating
the insulation within which rows of parallel rectangular
conductors are positioned uniformly [3]. The problem
reduces to the determination of the conductivity of the
two~-dimensional figure shown in Fig, 3. We willdivide
this figure into three parts by means of the isothermal
line MN and with the adiabatic line KM, It follows from
the above that the first operation increases conductiv-
ity, while the second operation reduces the conductiv-
ity of the derived composite figure, relative to the
original figure, However, since the lines MN and KM
are close to the isotherm and to the adiabatic curve of
the given figure (we can prove this by using the famil-
iar method of constructing isotherms and adiabatic
curves [6]), we should expect the conductivity of the
original figure to be approximately equal to the con-
ductivity of the original figure to be approximately
equal to the conductivity of the composite figure:

I znl + (RII + RIII)_l — HI + HII.

Here R = 0, since the boundary isotherms in figure
III touch, Figure I is a rectangle and figure Il is a
transposed trapezoid.  Using Egs, (10), (16), and (17),
with the denotations of Fig, 3, we derive

-1
I~ i—{- (arctg _Q_) %
. c d

b d
xn || —+1} e 1 1
[(c+> b+1/b"+d2]+ s
for
b bV
< — 1,
c d
a c b ~1
M~ — e e e 19
c+(+ d b—d+1/b2+d2) (19)
for
b b VFIE
< —1.
c d
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Formulas (18) and (19) have been checked by a numer-
ical method, For small values of d/b we find the
results to be in excellent agreement. For example,
whena =3, b=6, c =4, and d = 2 the calculation by a
numerical method for a network spacing of 0.5d yields
0 = 1,170, whereas according to formula (19) we have
II =1.,163.

NOTATION

Q is the heat flux; A is the thermal conductivity;
t is the temperature; y is the stream function; q, and
4, are the orthogonal curvilinear coordinates which
coincide with the system of isothermal and adiabatic
curves of the plane figure; H, and H, are functions of
the coordinates q; and qy; ds; and ds, are the differen-
tials of the adiabatic and isothermal arcs; m, n, M,
and N are constants; f and F are symbols of functions;
Il is the conductivity of the plane figure; R is the
resistance of the plane figure; II* and R* are the con-
ductivity and resistance of the transposed figure; S is
the figure area; I, 6, a, b, ¢, d, and h are various
linear dimensions; ry and r; are the large and small
radii of the ring; o and ¢ are angles; i is an integer;
x is a coordinate,
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